Tag Archives: WSPR

2el Vertical Beam Antenna WSPR Results

I ran the 2el vertical beam antenna on 20m WSPR for most of the last week. This time I looked at the WSPR challenge data as compared to N5CEY’s station about 15 miles away. During the week we both made the WSPR challenge scoreboard. On some days I had a higher unique count while on others N5CEY did. The WSPR Challenge site provides a list of all the stations heard in a 24 hour period along with their counts. This can be downloaded and sorted to see which stations had the highest counts. The data for a specific station can then be downloaded over the time period. Here is the count comparison:

wspr challenge counts

Here is a plot of the reported SNR vs time to K8JBV in Ohio from both my station (red) and N5CEY (blue):

WSPR comp

This chart is fairly typical and shows that N5CEY has about a 6dB higher SNR at his station vs. mine. I did note at least two stations, one in Georgia and the other in Florida, that had SNR roughly equal at the two receiving stations. This correlates well with the direction I have the vertical beam pointed. Likewise stations on the backside of the beam have a  few dB more separation.

I am pretty happy with the performance of the vertical beam antenna overall. What I would like to do next is operate portable from a more rural location and measure and differences in SNR on WSPR.

Advertisements

The 2el Vertical Beam Lives!

Made a run to Home Depot this morning and bought the PVC bits I needed to build the 2el vertical Beam I described in a previous post. The PVC is for the antenna mount to raise the feed point up to about 8 feet. I had some issues laying the elements out in the backyard as a tree was in the way. The two elements are 16 ft apart which is a bit further than the 13 feet modeling showed was optimum. I started by setting up the driven element. this went together very similar to the homebrew Buddistick with the exception that the fishing pole allows me to go full length. It tuned under 2:1 SWR across the whole 20m band. The reflector was even easier as it does not need to be tuned. I used one continuous piece of wire for the element and radial and keep the distance to the radial end at 14 feet. The beam is pointed in roughly a 45° bearing towards the northeast USA and Europe.

I should mentioned I did all this in a dead calm and in very muggy conditions outside today. I did not like the was the PVC was bending but rather than properly guy them I opted to try the antenna out a bit first…what could go wrong? I ran WSPR for about 2 hours with the following result:

2018-04-07

Note the high density of spots to the NE and the two spots to Europe. Pretty good for this time of day. Some SSB work towards the Mississippi QSO party yielded several “strong signal” QSO’s. I also made a QSO to Spain. After I closed that QSO, I switched to the S9V31 and noted a drop on the S meter from S4 to S1 when he was transmitting. Not sure what to make of that as 3 S units represents an 18dB change in signal strength. Perhaps the difference in pattern?

Did I mention what could go wrong? Let me first mention that PVC is like a wet noodle. The reflector was supported somewhat by some nearby tree branches but the driven element was not cooperating. I leaned a step ladder against it to provide a bit of support. Now remeber I did not guy it down as I was anxious to test it out. The weather shifted while I was gathering data. A cold front blew in and it started to rain lightly and the wind started gusting. The antenna has not failed but I don’t expect it to stay up through the night. The driven element is leaning over quite a bit in the breeze and I expect it to flop over at some point. The good news is this is hard to damage.

I’ll guy it up tomorrow for more extensive use. I think this is finally a winner in the gain department. Setup is fairly easy with the only thing I need to improe being how to get the feed point to 8 feet and still keep it portable.

Lowering the HF Noise Floor

Previous posts have reported on WSPR performance with my vertical antennas especially compared to data collected by a nearby Ham (Cliff – N5CEY) with a similar antenna setup. The metric is how well a given antenna receives unique spots over a 24 hour period as documented by the WSPR Challenge site. I have always seemed to lag behind Cliff’s receive performance in spots and in DX received. I have asked Cliff about the specifics of his setup and came to the conclusion that he has a significantly lower noise floor at his QTH in the country versus mine in the city. Cliff’s QTH is about 12.5 miles north of mine in a rural area. He is closer to the coast and likely has much better soil conditions as well. His antennas on WSPR are all 1/4 wave verticals on 40m, 30m and 20m. I have an “ugly” balun installed at the feed point of my vertical and about 30 feet of RG-8X to the shack entrance. There are about 8 loops of coax at the shack entrance. Inside the shack are various patch cables connecting switches, antenna tuners, SWR meters and the Timewave ANC-4 to the IC-7300. Lots of nearby noise sources including PC’s, cable modems, wifi routers etc.

So the task before me is how to lower the noise floor at my QTH to bring in weaker signals. I have done quite a bit of research and finally came upon some discussion of the effects of Common Mode currents on noise floor. My next post will detail some measurements on various common mode current chokes but for now suffice it to say that changing my common mode choke arrangement has had a positive effect on the noise floor. Here is what I did:

  1. Added a CMC consisting of 12 turns of RG-8X around a FT240-43 toroid core right at the IC-7300 antenna connection. This resulted in a 1 S (6dB) unit reduction in the received noise!
  2. Replaced the ugly balun with a choke as above. No significant change noted in noise floor.
  3. Replaced 30 feet of RG-8x feed line to the shack with 30 ft of RG-213 coax. No significant change in the noise floor was noted. this change should help in reducing losses though.

Adding the choke to the antenna input made a big improvement in lowering the noise floor. I adjusted the Timewave ANC-4 to further try and negate any remaining noise.

So the results are as follows after 20m WSPR was run for 24 hours:

wspr1wspr2

Pulled ahead of N5CEY by 8 unique spots and made the DX list still lagging a bit behind Cliff. Here are my spots during this period (right image is Cliff’s and the one on the left is mine):

2018-03-18 (1)2018-03-18

So all in all a significant improvement by addressing Common Mode Currents. More on the Chokes in an up comming post.

 

The S9V31 is Working…but How Well?

I have been trying to collect some solid data on the performance of the S9V31 antenna configured for multi-band operation. It is currently configured to be non-resonant on any band and I go through an antenna tuner in the shack. WSPR results have been lackluster and possibly a little worse than when run as a resonant 40m antenna. FT-8 spots on pskreporter.com on the other had have been quite good on early morning 40m. I am being heard all along the western Pacific rim consistently.

I have noticed quite a few stronger European stations in the late afternoon on 20m and have made several SSB contacts. I actually closed four all time new ones this week: St Eustatius on 12m, Republic of Congo & Easter Island on 17m, and Revillagigedo Island on 20m. Interesting that 12m and 10m have had brief openings in the late afternoon. Band conditions have been pretty bad with long periods of zero sunspot numbers.

I am still working on what to do to lower the noise floor at the shack. I feel that is the key to improve station performance and should be readily visible when running WSPR. More on that coming up….

 

The Alpha Antenna S9v31 is On the Air

After a full year of experimentation with vertical antennas I finally deployed the Alpha Antennas S9v31 antenna. It was a perfect day here for it as well. Mid 80’s with very little wind. A bit muggy for the work on the radial field but otherwise just a beautiful day in South Texas!

First up was finishing up the radial field. I set out the radial plate with 20 radials with lengths that vary from about 10 feet to just over 25 feet. The back breaking job was installing the lawn staples to hold them down. Tedious but straightforward. The yard was freshly mowed and I had tested three long radials and found no issues with the mower. Here is the finished radials:

Next I removed the 20m vertical element and finally lowered the SOTAbeams travel mast. This mast took a great deal of abuse over the past year or so and all told is still in serviceable shape. I highly recommend this mast!

The setup of the S9 was really simple. The mast is extended on the ground and a set of clips installed at each section joint to prevent collapse. The radiating wire is inside the mast. Once extended it is walked up and I mounted it onto the same aluminum angle I used with the travel mast. The hook ups remained the same with the junction box and ugly balance used before.

Here is the finished product:

I am running WSPR on this now so will report on performance after I collect some additional data.

Inadvertently Stress Testing a Homebrew Buddistick

I took out my homebrew Buddistick over the weekend to test its performance versus the full size verticals I have been playing with. I haven’t really deployed this in some time so I was able to make some comparisons to some of the antennas I have been working with lately, namely the 1/4 wave ground mounted verticals. Setup up was about as easy as I remembered it but certainly more complicated than the ground mounted vertical. It is also heavier than I remembered it to be. I had it setup with three guy lines and a single elevated radial and it tuned to 1.46 SWR on the 20m band. On 20m it is not a full size radiator and relies on a small coil to bring it to resonance.

Performance was actually quite good on 20m WSPR. Two days in a row I made the WSPR challenge board. It still remains about 20 spots below the nearby station of N5CEY. The number of spots on 1/2W transmit was about equal to the number of receive spots which I am finding to be a good indicator of antenna efficiency. Thais tells me what I already knew, that is, it is a good QRP field antenna.

The antenna went up Saturday afternoon and stayed up through Monday afternoon. Monday it got breezy here at the QTH. Wind speeds picked up to around 20mph with gusts to 35mph. At some point, the camera tripod failed at the point where the PVC pipe meets the tripod. The whole mess came down hard. Fortunately, the whip was spared any damage and the tripod can be repaired.

IMG_1444

For my next trick I am going to try and replace the whip with a fishing pole and wire with an elevated radial. Should be much lighter. It has also proven to be much more resistant to the “valley Wind Machine” that builds up around here this time of year.

40-20-15m EFHW Round 2 – Update

WSPR results o 40m and 20m WSPR look good with the EFHW. here is 40m during nightime hours:

2017-12-11_9-54-35

And 20m for just a few hours yesterday and so far this morning:

2017-12-11_9-55-11

On 40m there have been 103 unique heard vs 106 heard by (@1/2 W). On 20m, this is 124 unique heard vs. 74 heard by (also @1/2 W). These numbers indicate good overall performance.

I found a great write up on how to build one of these antennas titled “A Shortened Multi-band End-Fed half Wave (EFHW) Antenna for 80-10m” by Steve Nichols, G0KYA.

I am going to do some work on how to best deploy this in the field given my typical situation (i.e. lack of tall trees). this could be a great Field Day antenna.

40-20-15 EFHW

Here are the 24 hour WSPR results on 40-20-15m receive using band hopping. They appear to be pretty consistent with current band conditions and while not as good as the 1/4 wave vertical it is a very respectable and very portable multi-band antenna.

40m40m

20m20m

15m15m

The SWR plot is as follows:

swr

These antennas are increasingly popular and many quality antennas sell for ~$140. Building your own is very simple and I would estimate my cost to build this would not be greater than $30. This will work out to be a good antenna for portable or field day use. It is not especially sensitive to mounting or orientation.

 

More Test Results of The Ground Beam QEC Antenna

Tried 20m FT-8 early this morning as VOACAP indicated this was the best time for EU contacts on this band. My signals were heard toward the Northeast US but very few were heard in the EU. I made no QSO’s. WSPR results over 24 hours are here:

wspr mapo

This data appears to confirm that this antenna is directional (I have it pointed at a 45° bearing from my QTH)  but the F/B ratio is still relatively poor. The antenna is about the same as the 1/4 wave vertical overall. I must say that my single reports in the forward direction on SSB have been very good. Propagation on 20m is not helping. VOACAP shows the following based on 100W SSB with the receiving antenna based on a dipole at 10m:

prop1prop2

20m has been largely dead after dark. This chart indicates that 20m contacts with this combination of antennas and power will be challenging to the EU.

Overall, The ground beam – QEC antenna is an easy to carry and deploy vertical antenna with just enough directionality to help in some situation. It is well suited to my QTH on filed day as it has a wide enough bandwidth to cover the USA and Canada.

Initial impressions of the Timewave ANC-4 Antenna Noise Canceller

My used Timewave ANC-4 arrived yesterday from Ebay. It lacked a power connector which fortunately I had in my junk box. I wired the cable up and added some power poles. It came with an antenna that consists of about 8 feet of wire connected to the center pin of an RCA plug. I set this up roughly vertically inside the shack. The unit must be grounded to work effectively with this wire antenna. I fiddled with it awhile but did not have much luck in reducing noise initially. Per the manual, the first thing to try was ensure that the sense antenna was picking up the noise at about the same amplitude as the main antenna. The receiver is setup to an unused frequency and the noise level measured on the S-meter. The phase and noise gain controls are fully CCW. The  main antenna was disconnected and the noise gain adjusted until it matches the S-meter reading  measured previously. The main antenna is then reconnected and the phase control is adjusted until a null is found.

This took awhile to figure out but with the IC-7300 it is easy to see the results on the waterfall. As you get close to a null the background on the waterfall will darken and signals will become more distinct. I estimate that the change is about a 2 S unit reduction in noise. I have run the unit on 20m WSPR and over a 1 hour period had 42 unique spots compared to N5CEY’s 21 unique spots.

So initial results look promising. I will need to work more with this and collect some data on to its effectiveness.